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Abstract—Given the residue number systems that contain 

moduli of the form 𝟐𝒒 ± 𝟏 and 𝟐𝒒 ± 𝟑, it is desirable to employ 

delay-balanced adders and multipliers, in order to synchronize 

the operation of parallel residue channels. The required 

modulo-(𝟐𝒒 ± 𝟑) adders, with compatible speed with modulo-

(𝟐𝒒 ± 𝟏) adders, already exist with parallel prefix architectures. 

However, the previously reported modulo-(𝟐𝒒 ± 𝟑) multipliers, 

in one way or another, produce the non-modular products of the 

residues at the outset and work towards yielding the final 

modular product. This seems to be the main source of 

incompatible performance with the existing modulo-(𝟐𝒒 ± 𝟏) 

fully modular multipliers. Therefore, as the first endeavor, we 

were motivated to design and implement efficient modulo-(𝟐𝒒 −
𝟑)  multipliers with fully modular partial product generation 

and reduction that are more compatible with their modulo-

(𝟐𝒒 − 𝟏) counterparts. However, unlike the case of modulo 𝟐𝒒 −
𝟏, it turns out that the straightforward modulo-(𝟐𝒒 − 𝟑) partial 

product reduction (e.g., via Wallace-tree reduction with greedy 

use of full adders and half adders) falls into an infinite loop of 

reduction stages. Therefore, we undertake a modified reduction 

algorithm that requires at most two reduction levels more than 

that of the modulo-(𝟐𝒒 − 𝟏) case to converge. To ensure the 

correct operation of the algorithm and ease the design process, 

an in-house software program produces the exact composition 

of reduction cells in each level of partial product reduction. 

Analytical and synthesis-based evaluations of the proposed 

design, and the previous ones, exhibit better figures of merit, as 

regards the delay (≥ 𝟐𝟒%), area-delay (≥ 𝟔%) and energy (≥
𝟏𝟎%) measures. 

Keywords— Residue number system, Fully modular 

multiplication, Partial product reduction 

I. INTRODUCTION 

Residue number systems (RNS) and the corresponding 
modular arithmetic are widely used in the realization of 
several add/multiply intensive arithmetic applications, such as 
digital signal processing [1], image processing [2], machine 
learning platforms [3], multi-layer convolutional neural 
networks [4], and cryptosystems [5]. Extra arithmetic speed, 
lower power dissipation, and fault tolerance capability are the 
most desired benefits of performing modular addition and 
multiplication in a multi-channel parallel architecture of an 
RNS. The optimum efficiency is brought about in the case of 
equal-width residue channels corresponding to moduli of the 
form 2𝑞 ± δ . Most often, δ(< 2𝑞−1)  is so chosen to yield 
pairwise mutually prime moduli in order to maximize the 
dynamic range (i.e., cardinality of the numbers represented by 
the underlined RNS). Enforcing the same 𝑞  across all the 
residue channels is generally essential (but not always 
sufficient) for balanced-delay modular operations between 
channels. Unfortunately, however, such delay-balanced 
property does not spread over all the δ -values. That is 
probably why the relevant RNS literature offers very few 
balanced modulo-(2𝑞 ± δ) adders and even fewer multiplier 
architectures for δ > 3, while ultra-efficient modulo-(2𝑞 ± 1) 
adders [6, 7] and multipliers exist [8]. 

Fig. 1 describes how a 𝑞 × 𝑞  modular partial product 
(MPP) bit-matrix is formed via modulo- (2𝑞 − 1)  partial 

product generation (PPG). Note that the weighted- 2𝑞+𝑖 
(0 ≤ 𝑖 < 𝑞) columns do not actually exist since, given that 

|2𝑞+𝑖  |2𝑞−1  = 2𝑖, the virtual gray/black shaded pixels of the 
corresponding (𝑞 − 1) × (𝑞 − 1)  triangle, are reentered in 
positions 0 ≤ 𝑖 ≤ 𝑞 − 1  (see the pure gray-shaded actual 
pixels). For example, a 2𝑞+1-weighted non-modular product 
bit ∎ reenters in position 1, as a modular bit ∎. As such, the 
multiplier design is fully modular from the beginning, whether 
for PPG or partial product reduction (PPR). However, the bit-
products that weigh less than 2𝑞  form the upper-left 𝑞 × 𝑞 
triangle of actual pure black pixels (i.e., ∎) in the rightmost 𝑞 
columns. The operands of the final carry-propagate addition 
may equal 2𝑞 − 1 (i.e., equal to the modulo), which given the 
common practice of safe double zero representation in 
modulo- (2𝑞 − 1)  addition and multiplication, no problem 
arises. 
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Fig. 1. Modulo-(24 − 1) multiplication with fully modular PPG and PPR 

In the case of modulo-(2𝑞 − 3 )  multipliers, we have 
encountered only three works in the relevant literature, where 
all base their designs, in one way or another, on the non-
modular product of the residue operands. The final modulo-
(2𝑞 − 3) adder, is preceded by alternative circuitries in each 
design; namely 1) Forward converter of the 2𝑞 -bit plain 
binary product in [9]. 2) Forward converter of the 2𝑞 -bit 
carry-save product in [10]. 3) A half-precision partial product 
generator for the least-significant half of the non-modular 
product, and another one for the most-significant half of the 
triple product, followed by a fused non-modular PPR of the 
two parts, with due aggregate end-around carry correction. 
The carry-save result of the latter enters a compound modulo-
(2𝑞 − 3) adder whose outputs are multiplexed via the end-
around carry digit [11]. A brief description of these methods 
is provided in Section II.A, and more details on our perception 
of the third one are in the Appendix 1. 

 



In this work, in an effort for additional performance and 
closer compatibility with the companion modulo-(2𝑞 − 1 ) 
adder, we propose a modulo-(2𝑞 − 3) multiplication scheme 
with fully modular PPG and PPR, where the remaining 
sections are organized as follows. A brief background on RNS 
and the previous modulo-( 2𝑞 ± δ ) adder and multiplier 
architectures are offered in Section II, where in particular, we 
briefly examine the three previous contributions on modulo-
(2𝑞 − 3)  multipliers. In Section III, we propose the 
corresponding fully modular architecture and the results of 
analytical evaluations and synthesis outcomes of the previous 
designs where the due comparisons with the proposed one are 
compiled in Section IV. Finally, Section V contains our 
concluding remarks and plans for future works.  

II. BACKGROUND 

A rather brief look at the previous modulo-( 2𝑞 − 3 ) 
multiplication schemes follows a short introduction to RNS. 

A. General RNS 

The arithmetic operations of a 𝑘-moduli RNS take place 
in 𝑘 independent parallel residue channels corresponding to 
moduli {𝑚1, … , 𝑚𝑘}. The ith (1 ≤ 𝑖 ≤ 𝑘) channel commonly 
provides for a modulo-𝑚𝑖 operation-trio; namely, 1) residue 
generation, 2) addition, and 3) multiplication. There are 
commonly several (say 𝒩) operands that arrive in sequence 
and enter the unit 1), aka forward converters, which receive an 
𝑛-bit operand 𝑋 and generates the 𝑞(≪ 𝑛)-bit residues 𝑥𝑖 =
|𝑋|𝑚𝑖 = 𝑋 − 𝑚𝑖  ⌊𝑋/𝑚𝑖  ⌋, in parallel across the 𝑘 channels, 

for 1 ≤ 𝑖 ≤ 𝑘. The 𝑥𝑖   residues serve as one operand of units 
2) or 3), where the other operand is commonly the interim 
result 𝑦𝑖  of the previous consecutive modulo-𝑚𝑖  operations. 
On the arrival of the last input operand, the final 𝑘 -tuple 
residue results feed an RNS-to-binary converter (aka reverse 
converter) that produces the final non-modular result. 

The efficiency of an RNS computation depends on: 

1) Number of modular operations: At the end of 𝒩 
modular operations on 𝑞 -bit residues of the non-
modular 𝑛 -bit operands, the aggregate time savings 
due to 𝑞 ≪ 𝑛 may be much more than the time needed 
for the required final reverse conversion, if 𝒩 is large 
enough.  

2) The bit-width 𝑄  of the widest residue channel: The 
number of bits required for representing the residues 
determines the speed of operations in the 
corresponding channel. Therefore, RNS designers try 
to cover the dynamic range of the application via 
balanced width channels in order to minimize the delay 
of critical path. For example, the RNS with moduli set 
{2𝑞 , 2𝑞 ± 1} is very popular, where 𝑄 = 𝑞, across all 
three channels, for which balanced adders and 
multipliers exist. 

3) Efficiency of the modular adders, multipliers, and less 
critically of forward and reverse converters. 

4) Mutual primality of all moduli: This property 
maximizes the dynamic range. However, despite 
exhibiting the highest efficiency, only one power-of-
two modulo 2𝑞 is allowed, where the rest of moduli are 
commonly of the form 2𝑞 ± δ, with selected odd δ ∈
[1,2𝑞−1 − 1]. 

Efficient parallel prefix realizations of modulo-(2𝑞 ± δ) 

adders for δ ∈ {1,3,2𝑗 + 1}  exist [6, 7, 12, 13, 14] that 
provide for almost balanced delay. On the other hand, efficient 
modular multipliers have been offered for δ = 1 [8], based on 
fully modular PPG and PPR (e.g., as in Fig. 1). However, the 
relevant literature is not as reach for δ ≥ 3. 

B. Revisiting the previous contributions on modulo-(2𝑞 − 3) 

multiplication 

For ease of evaluation and comparisons, we use the same 
notation for the explanation of the previous modulo-(2𝑞 − 3) 
multipliers. Given that 𝐴 , 𝐵 ∈ [0,2𝑞 − 4], the non-modular 
product 𝐴 × 𝐵 , satisfies 𝑃 = 2𝑞𝑃ℎ + 𝑃𝑙 ∈ [0,22𝑞 + 16 −
2𝑞+3], where 𝑃ℎ = 𝑝2𝑞−1𝑝2𝑞−2 … 𝑝𝑞 , and 𝑃𝑙 = 𝑝𝑞−1 … 𝑝1𝑝0 . 

The number of reduction levels ℒ(𝑞)  must satisfy the 
following. 
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[9]: Equation (1), describes the essence of the contribution in 

[9], whose implementation is depicted in Fig. 2a, with 
three carry propagate additions (CPA) in sequence.  

|𝐴 × 𝐵|2𝑞−3 = |2𝑞𝑃ℎ + 𝑃𝑙|2𝑞−3 = |3𝑃ℎ + 𝑃𝑙|2𝑞−3    (1) 

The first adder is roughly 2𝑞 − ℒ(𝑞) ≥
3𝑞

2
-bit wide, with 

at least (3 + 2 ⌈log
3𝑞

2
⌉) ∆𝐺 ≥ (4.2 + 2 log 𝑞)∆𝐺 delay, 

in parallel prefix realization, where ∆𝐺 denotes the delay 
of a simple 2-input gate. This is preceded by ℒ(𝑞) =

⌈1.7 log
𝑞

2
⌉  CSA reduction levels, with the delay of 

⌈6.8(log 𝑞 − 1)⌉∆𝐺 , (4∆𝐺 , for each level). Then the 
authors use a modulo-(2𝑞 − 3) (4:1) compressor, where 
no architecture nor implementation details are provided. 
However, the actual design and structure of the 
aforementioned compressor, unlike its modulo-(2𝑞 − 1) 
counterpart, is not trivial and bears several levels of 
modulo-(2𝑞 − 3) carry-save additions due to reentrant 
carry digits ∈ {0,3}. Moreover, a single modulo-(2𝑞 −
3) addition at the last stage of the forward converter does 
not always yield the desired result. The reason is that the 
two 𝑞-bit operands may assume excess-modulo values in 
{2𝑞 − 3,2𝑞 − 2,2𝑞 − 1}. Therefore, the interim sum can 
be greater than twice the modulo, which requires another 
round of modulo deduction. Nevertheless, in the lack of 
implementation details in the article, we assume the 
lower bounds for the delay components. That is 6 ∆𝐺, 
for one (4; 2) compressor and 2(3 + 2⌈log 𝑞⌉)∆𝐺 , for 
two parallel prefix 𝑞 -bit adders, amounting to (12 +
4 log 𝑞)  ∆𝐺 . Therefore, a quite optimistic delay 
evaluation of this work leads to the overall delay figure 
roughly equal to (10 + 13 log 𝑞)∆𝐺.  

[10]: The multiplier of [10] is represented by (2), where 𝑈 +
𝑉  is the carry-save representation of the product 𝑃 , 
obtained in 6.8(log 𝑞 − 1)∆𝐺, the same as in [9]. Two 
levels of (4; 2) compressors modulo (2𝑞 − 3) reduce the 
six operands (2𝑈ℎ + 𝑈ℎ + 2𝑉ℎ + 𝑉ℎ + 𝑈𝑙 + 𝑉𝑙) of (2) to 
the 𝑞-bit input operands of the final modulo-(2𝑞 − 3) 
adder, where 𝑈ℎ = 𝑢2𝑞−1 … 𝑢𝑞 , 𝑈𝑙 = 𝑢𝑞−1 … 𝑢0 , 𝑉ℎ =

𝑣2𝑞−1 … 𝑣𝑞 , 𝑉𝑙 = 𝑣𝑞−1 … 𝑣ℒ(𝑞)0 … 0. The corresponding 

delay is at least 12∆𝐺, for the (4; 2) compressors, and 
2(3 + 2⌈log 𝑞⌉) ∆𝐺, for the final 𝑞-bit modular adders. 



Fig. 2b depicts the required implementation steps, where 
one carry-propagate addition is saved due to the carry-
save representation of the non-modular product. The 
same problem of excess-modulo operands persists as in 
the first work. Therefore, a very optimistic delay 
evaluation of this work leads to the overall delay figure 
of (12 + 11 log 𝑞) ∆𝐺. 

|𝐴 × 𝐵|2𝑞−3 = |𝑈 + 𝑉|2𝑞−3 =  
|2𝑞(𝑈ℎ + 𝑉ℎ) + 𝑈𝑙 + 𝑉𝑙|2𝑞−3 =  
|3(𝑈ℎ + 𝑉ℎ) + 𝑈𝑙 + 𝑉𝑙|2𝑞−3                          (2) 
 

[11]: The main idea of the more recent third design is to 
produce a carry-save representation of 3𝑃ℎ (𝑃𝑙) via the 
most (least) significant half of the multiplier for × 3𝐵 
(𝐴 × 𝐵) . The triple and single half products are 
organized in the same partial product bit-matrix and 
reduced together. The carry-save result enters a 
compound modulo-(2𝑞 − 3) adder that yields the final 
modular product, where there are no details (though 
nontrivial) on the compound adder. For self-containment 
and sound basis for evaluation of Seidel’s [11] work, we 
provide in the Appendix 1 a few clarifying illustrations, 
besides Fig. 2c, based on our comprehension of this 
innovative method. Nevertheless, unlike the 
aforementioned two older contributions, the double 
{0,1,2}  representation modulo-(2𝑞 − 3) adder of [12] 
has been used, with (4 + 2⌈log 𝑞⌉)∆𝐺 delay. The other 
delay components of this work are 4∆𝐺 for the PPG and 
Booth recoding, 4ℒ(2𝑞)∆𝐺 = 4⌈1.7 log 𝑞⌉∆𝐺 for PPR, 
and 6∆𝐺, for the (4; 2) compressor, which all together 
roughly amounts to (14 + 9 log 𝑞)∆𝐺. 

III. THE PROPOSED SOLUTION 

The straightforward fully modular approach in designing 
the modulo-(2𝑞 − 3) multiplier follows the same path as in the 
similar design for modulo 2𝑞 − 1 (see Fig. 1). However, each 

2𝑞+𝑖 -weighted bit ( 0 ≤ 𝑖 < 𝑞 ), of a partial product, is 
reentered as two bits in positions 𝑖  and 𝑖 + 1 , since 

|2𝑞+𝑖𝑐|
2𝑞−3

= |2𝑞 × 2𝑖𝑐|
2𝑞−3

= 3 × 2𝑖𝑐 = 2𝑖+1𝑐 + 2𝑖𝑐 . 

Therefore, as is depicted by Fig. 3 (for 𝑞 = 4), the obtained 
Level 0 of the actual MPP matrix contains a 𝑞 × 𝑞 triangle of 
black pixels (same as in Fig. 1), a (𝑞 − 1)×(𝑞 − 1) triangle 

due to 2𝑖𝑐 component of reentrant product bits (also as in Fig. 

1), and an additional shifted-left triangle due to 2𝑖+1𝑐 
components. Consequently, there are 𝑞  product bits in the 
rightmost column and (2𝑞 − 𝑖) bits in the rest of columns for 
𝑖 (1 ≤ 𝑖 < 𝑞). In particular, the 2nd column (i.e., 𝑖 = 1) from 
the right is the deepest one with 2𝑞 − 1 bits. Fig. 3 further 
illustrates the next levels of the reduced MPP matrices, where 
the new reentrant product bits land only in the first two 
rightmost columns.  

Unfortunately, however, utilizing the conventional 
Wallace-tree reduction (as in Fig. 1) leads to a repeated pattern 
of product bits in Level 5; hence an infinite loop of reduction 
levels that never reduces to a 2-deep MPP matrix. This 
problem, which is further analyzed in Section III.A below, is 
shared for all 𝑞 -values, as is examined via an in-house 
software program, for 𝑞 ∈ [3,64]. 

A. The Problem 

Recalling Fig. 3 and the aforementioned problem in the 
convergence of Wallace-tree reduction of modulo-(2𝑞 − 3) 
partial products, note that the main cause of such anomaly is 
due to the peculiarity of the second column from the right in 
the MPP matrix. This column is originally the deepest with 
2𝑞 − 1 bits. Moreover, it receives carry bits from two sources.  
1) Ordinary carry spillovers due to reduction cells utilized in 
its right (i.e., weighted-1) column. 2) Direct reentrant carries 
from the reduction cells of the leftmost (i.e., weighted-2𝑞−1) 
column. A copy of the latter carries is also sent to the 
weighted-1 column, which in turn may cause additional 
spillovers to the left (i.e., to the weighted-2 column). On the 
other hand, a full adder (FA), as a reduction cell, decreases the 
column’s depth effectively by 1, but an HA does not decrease 
the depth except for the rare cases of no carry spillover from 
the right. Such HA behavior suggests that when there are only 
two bits left in a column that are not assigned to an FA, one 
does not assign them to an HA and rather leaves them intact 
to be possibly used in the next reduction level by another FA. 

 

 

Fig. 2. Alternative designs for modulo-(2𝑞 − 3) multiplication, (a) [9], (b) [10], (c) [11], and (d) Proposed design. Components’ delays are in terms of 

∆𝐺 (i.e., the delay of a simple 2-input gate). 



This strategy very much resembles the Dadda reduction 
method for non-modular PPR. However, it cannot be 
considered here as an exact application of Dadda reduction. 
The reason is that the essential property of equal depth of 
partial product matrices of Wallace and Dadda trees, in all 
reduction levels, may not be observed in modular reduction. 

B. The Solution 

Based on the above discussion, limiting the reduction cells 
to FAs (unless extra reduction levels are not avoidable) seems 
to lead to the desired convergence that was not possible when 
Wallace tree reduction rules are strictly observed. For 
example, Fig. 4 provides for the Dadda-like MPP matrix for 
𝑞 = 4 , where the reduction process converges after five 
levels, which is only one level more than the minimum 
number of (3:2) reduction levels required for a (7:2) reduction. 

However, via running the aforementioned in-house software 
program, for 𝑞 ∈ [4,64], we have found out that the latter 
undesired extra level (i.e., for 𝑞 = 4) is required only for the 
case of 𝑞 = 32  (i.e., 10 levels instead of 9 levels of non-
modular reduction.  

The latter Dadda-like reduction scheme is outlined in 
Algorithm 1, where 𝑑𝑖 = 2𝑞 − 𝑖(0 < 𝑖 < 𝑞)  denotes the 
depth of Column 𝑖 in terms of bits, and 𝑑0 = 𝑞. Recalling the 
identical reentrant bits in the Level 0 of Fig. 3, note that two 
outputs are forked out from 𝑞(𝑞 − 1)/2  of the total 𝑞 × 𝑞 
AND gates. A sample output of the corresponding software 
(slightly decorated) is given in the Appendix 2. 

 

Algorithm 1 (Modulo-(2𝑞 − 3) fully modular multiplication): 

Input: 𝑞-bit multiplicand and multiplier residues 
Output: Composition of the required FA cells for all the 
reduction levels and columns 

1. Init: 𝑑0 = 𝑞, For 𝑖 ≔ 1 to 𝑞 − 1 do 𝑑𝑖 = 2𝑞 − 𝑖. 

2. MPPG: Generate the Level-0 MPP matrix via a matrix of 
𝑞 × 𝑞 AND gates; 

3. Do while there exists a column with a depth more than 2 

 a. Column #0: Apply ⌊
𝑑0

3
⌋ FA reductions ⟹  

𝑑0 = 𝑑0 − 2 ⌊
𝑑0

3
⌋ + ⌊

𝑑𝑞−1

3
⌋ ;  /*Sending (Receiving) ⌊

𝑑0

3
⌋ 

(
𝑑𝑞−1

3
) carry bits to (from) Column 1(𝑞 − 1)*/ 

b. Column #1: Apply ⌊
𝑑1

3
⌋ FA reductions ⟹ 

𝑑1 = 𝑑1 − 2 ⌊
𝑑1

3
⌋ + ⌊

𝑑0

3
⌋ + ⌊

𝑑𝑞−1

3
⌋;  

/*Sending (Receiving) ⌊
𝑑1

3
⌋  (⌊

𝑑0

3
⌋ + ⌊

𝑑𝑞−1

3
⌋)  carry bits to (from) 

Column 2 (0 and 𝑞 − 1)*/ 

c. Columns 1 < 𝑖 < 𝑞: 

  For 𝑖 = 2  to 𝑞 − 1  do Apply ⌊
𝑑𝑖

3
⌋  FA reductions 

⟹ 𝑑𝑖 = 𝑑𝑖 − 2 ⌊
𝑑𝑖

3
⌋  ⌊

𝑑𝑖−1

3
⌋ ; /*Sending (Receiving) 

⌊
𝑑𝑖

3
⌋ (

𝑑𝑖−1

3
) carry bits to (from) Column 𝑖 + 1 ( 𝑖 − 1)*/ 

End For 
 End Do while.∎ 

C. Proof of Convergence of Algorithm 1 

The number of reduction levels ℒ(𝑞), for a full 𝑞 × 𝑞 bit 
MPP matrix (e.g., Fig. 1, for 𝑞 = 4 ), must satisfy the 
following.  

2 (
3

2
)

ℒ(𝑞)

≈ 𝑞 ⟹ ℒ(𝑞) log
3

2
≈ log

𝑞
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⟹ 

ℒ(𝑞) ≈ ⌈
log

𝑞
2

log
3
2

⌉ ≈ ⌈1.7 log
𝑞

2
⌉ 

Let 𝑝 = ⌊log 𝑞⌋ ⟹ 𝑞 = 2𝑝γ(1 ≤ γ < 2), which leads to 

(3), since ℒ(𝑞) ≈ ⌈1.7 log
2𝑝γ

2
⌉ ≈ ⌈1.7(𝑝 − 1 + log γ)⌉. 

⌈1.7(𝑝 − 1)⌉ ≤ ℒ(𝑞) ≤ ⌈1.7𝑝⌉, 𝑝 = ⌊log 𝑞⌋                      (3) 
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Fig. 3 Modulo-13 Wallace-tree PPR 



To figure out the number of reduction levels for modulo-
(2𝑞 − 3) multiplication, note that the maximum depth, in all 
reduction levels, occurs for Column 1. The reason is that it is 
originally maximum (i.e., 2𝑞 − 1, as there are 7 bits in Level 
0 of Fig. 3, for 𝑞 = 4) and is the only column that can receive 
carry bits from two other columns within each level of 
reduction; namely the right- and left-most columns, with the 
original depth of 𝑞 , and 𝑞 + 1 , respectively. This is 
approximately the same as the hypothetical case that Column 
1 receives carry bits only from a single (2𝑞 + 1)-deep column 
on its right. Therefore, the number of reduction levels 𝐿1, for 
Column 1, can be approximated with ℒ(2𝑞), based on (3) (i.e., 
for a full 2𝑞 × 2𝑞 bit MPP matrix), which leads to (4). The 
case of 𝑞 = 10  is further illustrated in the Appendix 3. 
Therefore, Algorithm 1 converges in ⌈1.7 log 𝑞⌉  levels of 
reduction, with the delay of 4⌈1.7 log 𝑞⌉∆𝐺, where the total 
delay roughly amounts to (5 + 9 log 𝑞)∆𝐺. 

⌈1.7𝑝⌉ ≤ 𝐿1 ≈ ℒ(2𝑞) ≈ ⌈1.7 log 𝑞⌉ ≤ ⌈1.7(𝑝 + 1)⌉      (4) 

D. MPPR Delay Analysis 

Delay of the proposed modulo-(2𝑞 − 3) PPR is only 2FA-
delay more than that of modulo-(2𝑞 − 1) , since ℒ(2𝑞) ≥
ℒ(𝑞) + 2  via comparing (3) and (4). For example, for the 
common cases of 𝑞 = 2𝑝  (i.e., γ = 1 ), ℒ(𝑞) ≈ 2,4,6,7,10 , 
and 𝐿1 ≈ ⌈1.7 × 2⌉ = 4 , ⌈1.7 × 3⌉ ≈ 6 , ⌈1.7 × 4⌉ ≈ 7 , 
⌈1.7 × 5⌉ ≈ 9 , ⌈1.7 × 6⌉ ≈ 11  for 𝑞 = 4,8,16,32,64 , 
respectively.  

On the other hand, given the approximate nature of the 
latter evaluation, the actual 𝐿1  values may be slightly 
different. As a matter of fact, the exact results, as are produced 
by the aforementioned software program, are 𝐿1 =
4,6,8,10,11 in contrast to the above approximate results 𝐿1 =
4,6,7,9,11.  

Nevertheless, for other 𝑞-values (i.e., 1 < γ < 2), lower 
and upper bounds can be figured out from (4). For example, 

the case of 𝑞 = 9 = 23 ×
9

8
 (i.e., γ =

9

8
) leads to ⌈1.7 × 3⌉ ≤

𝐿1 ≤ ⌈1.7 × 4⌉ ⟹ 6 ≤ 𝐿1 ≤ 7, which is in accordance with 
the actual number of reduction levels 𝐿1 = 6, as is derived by 
the aforementioned program. 

IV. EVALUATIONS AND COMPARISONS 

As was mentioned in Section II, the previous works in [9] 
and [10] do not address the problem of excess-modulo 
operands of the final modulo-(2𝑞 − 3) adder, which requires 
another round of carry-propagate addition, unless it is 
somehow avoided, as is the case in the work of [11] that refers 
to [12], for implementing the utilized compound modulo-
(2𝑞 − 3) adder. However, the nontrivial details of the 4-way 
compound structure is not provided therein.  

The proposed solution also uses the modulo-( 2𝑞 − 3 ) 
adder of [12] but as the only carry-propagate adder in the 
whole design, where the overall delay (see Fig. 2.d and 
Section III.C) roughly amounts to (5 + 9 log 𝑞)∆𝐺. Recalling 
the optimistic evaluations of the three previous works (see 
Section II.B), no optimism is practiced in the evaluation of the 
current work. 

Recalling the PPR of Fig. 4, the number of utilized FAs 
amounts to 18, for 𝑞 = 4 . This figure for 𝑞 ∈
{8,16,32,64,128}  is {84,360,1488,6048,24384} , 
respectively. However, the three reference designs require less 
FAs (e.g., about equivalent of 10, 7, and 8 FAs, for 𝑞 = 4), 
while are quite more costly on the other components.  

For circuit synthesis, we have described the home design 
and those of [9] and [10] , for 𝑞 ∈ {4, 8, 16}, with Verilog 
code, which is used for correctness tests and simulation via 
Synopsis Design Vision, with TSMC 90nm CMOS 
technology. The same experience was not possible for the 
work of [11], due to lack of sufficient information, and that no 
such results are provided for in that work. Therefore, we 
present Fig. 5 to show the relative delay measures for the four 
designs based on analytical gate level evaluations (see Section 
II.B), where the proposed design offers the fastest PPR. 

The experimental results are compiled in Table I, where 
the delay and energy measures of the proposed fully modular 
approach is superior to those of previous works, as are 
reflected by bolded ratio measures. 

02122232425262

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

 

Fig. 4 Modulo-13 fully modular reduction in five levels with 18 full 

adders 



V. CONCLUSIONS 

Modulo-(2𝑞 − 1) parallel multipliers that are realized via 
fully MPP generation and reduction, are known to be the most 
efficient of their kind. In particular the number of reduction 
levels is the same as in the case of non-modular multiplication. 
Similar approach on the design of modulo-( 2𝑞 − 3 ) 
multipliers has not been practiced before. In fact exact 
mimicking of the greedy approach of using full and half 
adders, as in the commonly practiced Wallace-tree reduction, 
does not converge the reduction process to two accumulated 
partial products for the final carry-propagate modular 
addition. That is probably why instead of fully modular 
reduction, the residue generation of non-modular products has 
been the trend. However, the incompatible speed with that of 
modulo-( 2𝑞 − 1 ) fully modular multipliers reduces the 
performance of RNS applications that use both moduli in the 
working moduli set. Therefore, by getting around the 
aforementioned convergence problem, we designed and 
implemented the first modulo-(2𝑞 − 3) multiplier with fully 
modular PPG and PPR. This fairly speed-compatible design 
with its modulo-( 2𝑞 − 1 ) counterpart yields the modular 
carry-save product within at most two more FAs in the critical 
delay path. Notably important is the use of the latest parallel 
prefix modulo-(2𝑞 − 3) adder, in the final stage of multiplier 
that is also speed-compatible with the modulo-(2𝑞 − 1) case. 
In particular, handling the possible excess-modulo 2𝑞 − 3 
operands with no delay overhead leads to more speed-balance 
[12]. In this work, at least 24% less delay, and 10% less PDP 
is gained in comparison to the figures of merit of the previous 
designs, at the cost of at most 20% area/power consumptions.  

As for the future relevant work, applying the similar fully 
modular approach for modulo-(2𝑞 + 3) and modulo-(2𝑞 −
2𝑗 − 1) is in order, with the sound expectation of extending 
the working moduli set with more balanced moduli. 
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APPENDIX 1 (HOME DESCRIPTION OF THE MAIN IDEA OF 

SEIDEL’S WORK [11]) 

Fig. A1-1 provides for partial product matrices for 𝐴 × 𝐵 
and 𝐴 × 2𝐵 , where 𝐴 , 𝐵 ∈ [0,12]  are modulo-( 2𝑞 − 3 ) 
residues, for 𝑞 = 4. The symbols ⊳, ⊲, and ⊔, represent the 
value of the corresponding 10-, 6-, and 4-bit collections. In 
addition, △  and △3  denote the collective values of 2𝑞 -
weigthed carries that are generated during partial product 
reduction for 𝐴 × 𝐵  and 𝐴 × 3𝐵  (i.e., 𝐴 × 𝐵  and 𝐴 × 2𝐵 , 
ensemble), respectively. Recalling that 𝐴 × 𝐵 = 2𝑞𝑃ℎ + 𝑝𝑙 , it 
is easy to see that: 

𝑃ℎ =⊲ + △, 𝐴 × 3𝐵 = 3 ⊲ + ⊔ + △3   (A1) 

Similarly, Fig. A1-2 represents the partial product MPP 
matrix for 𝐴 × (3𝐵), where 𝐵1, 𝐵2, and 𝐵3 denote the carry-
save digits of 3𝐵, and ⊲3 corresponds to the collective value 
of the shaded 10-bit collection that is indeed the output of the 
most significant half multiplier for 𝐴 × 3𝐵. 

Therefore, the two expressions representing the most 
significant half of 𝐴 × 3𝐵, in Figs. A1 and A2 yield the same 
value, which leads to (A2), and (A3) for implementation, 
where 𝑈 + 𝑉 represents the carry-save result of ⊲3+ 𝑃𝑙 . 

⊲3+△3= 3 ⊲ + ⊔ + △3⟹ 3 ⊲=⊲3−⊔⟹ 3𝑃ℎ = 3 ⊲
+3 △=⊲3+ 3 △ − ⊔                                   (A2) 
 
|𝐴 × 𝐵|2𝑞−3 = |3𝑃ℎ + 𝑃𝑙|2𝑞−3 = |⊲3+ 3 △ − ⊔
+𝑃𝑙|2𝑞−3 = |𝑈 + 𝑉 + 3 △ − ⊔|2𝑞−3                    (A3) 

Finally, the main idea of [11] is illustrated by Fig. A1-3, 
where 𝑑 denotes the actual bit-depth of each column, which 
depends on the number of carry-save digit-products. 
Therefore, the maximum depth is 2(𝑞 − 1) + 2 = 2𝑞, where 
recalling (3), the number of reduction levels, without the end-
around carry reentrance is ⌈1.7𝑝⌉ ≤ ℒ(2𝑞) ≤ ⌈1.7(𝑝 + 1)⌉. 
Note that ⊲3+ 𝑃𝑙  is obtained via joint partial product 
reduction of the bits of 𝐴 × 𝐵 least significant half multiplier 
and 𝐴 × 3𝐵 most significant half multiplier. This result must 
undergo a correction by 3 △ − ⊔, where △ (⊔) is obtained 
via a 𝑞-bit (𝑞-element) carry generation network (counter). 

 

 ⊔  

𝐴 × 𝐵 

    𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0 

⊳ 
   

⊲ 

  𝑎3𝑏1 𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1  

    𝑎3𝑏2 𝑎2𝑏2 𝑎1𝑏2 𝑎0𝑏2   

   𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3    

     𝑃ℎ =⊲ + △ ←△     

𝐴 × 2𝐵 

      𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0   

     𝑎3𝑏1 𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1    

    𝑎3𝑏2 𝑎2𝑏2 𝑎1𝑏2 𝑎0𝑏2     

   𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3 

        ⊔ 

    3 ⊲ + ⊔ 

    3 ⊲ + ⊔ + △3 ←△3     

Fig. A1-1 Partial product MPP matrix for 𝐴 × 𝐵, 𝐴 × 2𝐵, and collectively 𝐴 × 3𝐵 

 𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0 

𝐵1 = 𝑏1 + 𝑏0 

⊲3 
 

  𝑎3𝐵1 𝑎2𝐵1 𝑎1𝐵1 𝑎0𝐵1  

𝐵2 = 𝑏2 + 𝑏1  𝑎3𝐵2 𝑎2𝐵2 𝑎1𝐵2 𝑎0𝐵2   

𝐵3 = 𝑏3 + 𝑏2 𝑎3𝐵3 𝑎2𝐵3 𝑎1𝐵3 𝑎0𝐵3    

 𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3     

  ⊲3+△3 ←△3    

Fig. A1-2 Partial product MPP matrix for 𝐴 × (3𝐵) 

 



However, the Booth recoding is not applied, due to its trivial 
impact on the overall delay, since the delay of recoding is 
equal to the delay saving via one less reduction level. 
Therefore, the overall delay consists of those of PPG, PPR, △, 
(4; 2) compressor, and final modulo-(2𝑞 − 3) adder. 

 
𝑑 5 6 7 8 

⊔ 

𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0 
𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1 𝑎3𝐵1 
𝑎1𝑏2 𝑎0𝑏2 𝑎3𝐵2 𝑎2𝐵2 
𝑎0𝑏3 𝑎3𝐵3 𝑎2𝐵3 𝑎1𝐵3 

 𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3 

 ⊲3 

Fig. A1-3 Joint partial product reduction 

APPENDIX 2 (OUTPUT OF THE HOME SOFTWARE FOR 𝑞 = 10) 

Fig. A2 depicts the output generated by the in-house 
software, for 𝑞 = 10, where each dot represents a product bit 
The top dot matrix represents the original MPP, where 𝐿1 =
19, and integer list, on the right, regards the number of FAs 
used for the product bits of each column, from left to right, 
respectively. The next seven reduced MPPs can be explained 
likewise. The total FA counts in Levels 0, 1, 2, 3, 4, 5, and 6 
amount to 45, 31, 22, 15, 9, 9, and 4, , respectively. 

APPENDIX 3 (CLARIFICATION OF (4), FOR 𝑞 = 10) 

Table A3 presents the reduction levels of Fig. A2 in terms of 
the corresponding depths. Note that the leftmost column (i.e., 
𝑞 − 1) has been moved around to the right of Column 0, for 
better illustration of the end-around carry movements, where 
the carry emitting columns are indicated by ←  and the 
receiving ones by ↓ , with the same highlight color. The 
number of emitted and received carries are also denoted by the 
same font color. 

Using (4), in case of 𝑞 = 10  (i.e., 𝑝 = ⌊log 𝑞⌋ = 3 ), as 
follows, gives an estimation of 6-7 reduction levels that is 
confirmed by the actual seven reduction levels shown in  
Table A3. 

⌈1.7 × 3⌉ ≤ ℒ(20) ≤ ⌈1.7 × 4⌉ ⟹ 

⌈5.1⌉ ≤ ℒ(20) ≤ ⌈6.8⌉ ⟹ 6 ≤ ℒ(20) ≤ 7 

Table A3 Alternative illustration of Fig. A2 

𝑳∗ 𝒒 − 𝟐 𝒒 − 𝟑 … 𝟐 𝟏 𝟎 𝒒 − 𝟏∗∗  

*** 𝑞 + 2 𝑞 + 3  2𝑞 − 2 2𝑞 − 1 𝑞 𝑞 + 1 

 ←   ↓ ←  ←      ↓ ←     ↓   ↓ ←       ↓ ←     ↓ 

0 12 13  18 19 10 11 

1 8 9  12 
6 + 1 + 3 
+3 = 13 

3 + 1 
+3 = 7 

3 + 2 
+4 = 9 

2 7 6  8 
4 + 1 + 3 
+2 = 10 

2 + 1 
+3 = 6 

3 + 2 
= 5 

3 5 4  7 
3 + 1 + 1 

+2 = 7 
2 + 1 
= 3 

1 + 2 
+2 = 5 

4 4 3  5 
2 + 1 + 1 

+1 = 5 
1 + 1 
= 2 

1 + 2 
+1 = 4 

5 3 2  4 
1 + 2 

+1 = 4 
2 + 1 

1 + 1 
+1 = 3 

6 2 2  3 
1 + 1 

+1 = 3 
1 2 

7 2 2  2 1 1 2 

* Level #, 

** displaced from the left most position, for better illustration of 
spill over carries to Columns 0 and 1 

*** Original depth 
 

MPP dot matrix # of FAs per column

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

 

Fig. A2 Seven reduction levels for 𝑞 = 10, with the number of FAs indicated 
for each column and Level.


