
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Modulo-(2𝑞 − 3) Multiplication with Fully Modular

Partial Product Generation and Reduction
Ghassem Jaberipur1, Saeid Gorgin1, Navid Ahamadian2, Jeong-A Lee1

1Department of Computer Engineering, Chosun University, Gwangju, Republic of Korea
2Department of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

jaberipur@ chosun.ac.kr, gorgin@chosun.ac.kr, n.ahmadian@mail.sbu.ac.ir, jalee@chosun.ac.kr

Abstract—Given the residue number systems that contain

moduli of the form 𝟐𝒒 ± 𝟏 and 𝟐𝒒 ± 𝟑, it is desirable to employ

delay-balanced adders and multipliers, in order to synchronize

the operation of parallel residue channels. The required

modulo-(𝟐𝒒 ± 𝟑) adders, with compatible speed with modulo-

(𝟐𝒒 ± 𝟏) adders, already exist with parallel prefix architectures.

However, the previously reported modulo-(𝟐𝒒 ± 𝟑) multipliers,

in one way or another, produce the non-modular products of the

residues at the outset and work towards yielding the final

modular product. This seems to be the main source of

incompatible performance with the existing modulo-(𝟐𝒒 ± 𝟏)

fully modular multipliers. Therefore, as the first endeavor, we

were motivated to design and implement efficient modulo-(𝟐𝒒 −
𝟑) multipliers with fully modular partial product generation

and reduction that are more compatible with their modulo-

(𝟐𝒒 − 𝟏) counterparts. However, unlike the case of modulo 𝟐𝒒 −
𝟏, it turns out that the straightforward modulo-(𝟐𝒒 − 𝟑) partial

product reduction (e.g., via Wallace-tree reduction with greedy

use of full adders and half adders) falls into an infinite loop of

reduction stages. Therefore, we undertake a modified reduction

algorithm that requires at most two reduction levels more than

that of the modulo-(𝟐𝒒 − 𝟏) case to converge. To ensure the

correct operation of the algorithm and ease the design process,

an in-house software program produces the exact composition

of reduction cells in each level of partial product reduction.

Analytical and synthesis-based evaluations of the proposed

design, and the previous ones, exhibit better figures of merit, as

regards the delay (≥ 𝟐𝟒%), area-delay (≥ 𝟔%) and energy (≥
𝟏𝟎%) measures.

Keywords— Residue number system, Fully modular

multiplication, Partial product reduction

I. INTRODUCTION

Residue number systems (RNS) and the corresponding
modular arithmetic are widely used in the realization of
several add/multiply intensive arithmetic applications, such as
digital signal processing [1], image processing [2], machine
learning platforms [3], multi-layer convolutional neural
networks [4], and cryptosystems [5]. Extra arithmetic speed,
lower power dissipation, and fault tolerance capability are the
most desired benefits of performing modular addition and
multiplication in a multi-channel parallel architecture of an
RNS. The optimum efficiency is brought about in the case of
equal-width residue channels corresponding to moduli of the
form 2𝑞 ± δ . Most often, δ(< 2𝑞−1) is so chosen to yield
pairwise mutually prime moduli in order to maximize the
dynamic range (i.e., cardinality of the numbers represented by
the underlined RNS). Enforcing the same 𝑞 across all the
residue channels is generally essential (but not always
sufficient) for balanced-delay modular operations between
channels. Unfortunately, however, such delay-balanced
property does not spread over all the δ -values. That is
probably why the relevant RNS literature offers very few
balanced modulo-(2𝑞 ± δ) adders and even fewer multiplier
architectures for δ > 3, while ultra-efficient modulo-(2𝑞 ± 1)
adders [6, 7] and multipliers exist [8].

Fig. 1 describes how a 𝑞 × 𝑞 modular partial product
(MPP) bit-matrix is formed via modulo- (2𝑞 − 1) partial

product generation (PPG). Note that the weighted- 2𝑞+𝑖
(0 ≤ 𝑖 < 𝑞) columns do not actually exist since, given that

|2𝑞+𝑖 |2𝑞−1 = 2𝑖, the virtual gray/black shaded pixels of the
corresponding (𝑞 − 1) × (𝑞 − 1) triangle, are reentered in
positions 0 ≤ 𝑖 ≤ 𝑞 − 1 (see the pure gray-shaded actual
pixels). For example, a 2𝑞+1-weighted non-modular product
bit ∎ reenters in position 1, as a modular bit ∎. As such, the
multiplier design is fully modular from the beginning, whether
for PPG or partial product reduction (PPR). However, the bit-
products that weigh less than 2𝑞 form the upper-left 𝑞 × 𝑞
triangle of actual pure black pixels (i.e., ∎) in the rightmost 𝑞
columns. The operands of the final carry-propagate addition
may equal 2𝑞 − 1 (i.e., equal to the modulo), which given the
common practice of safe double zero representation in
modulo- (2𝑞 − 1) addition and multiplication, no problem
arises.

4 parallel
FAs

4 parallel
FAs

4 cascaded
FAs

02122232425262

Level 0

Level 1

Level 2

Level 3

Fig. 1. Modulo-(24 − 1) multiplication with fully modular PPG and PPR

In the case of modulo-(2𝑞 − 3) multipliers, we have
encountered only three works in the relevant literature, where
all base their designs, in one way or another, on the non-
modular product of the residue operands. The final modulo-
(2𝑞 − 3) adder, is preceded by alternative circuitries in each
design; namely 1) Forward converter of the 2𝑞 -bit plain
binary product in [9]. 2) Forward converter of the 2𝑞 -bit
carry-save product in [10]. 3) A half-precision partial product
generator for the least-significant half of the non-modular
product, and another one for the most-significant half of the
triple product, followed by a fused non-modular PPR of the
two parts, with due aggregate end-around carry correction.
The carry-save result of the latter enters a compound modulo-
(2𝑞 − 3) adder whose outputs are multiplexed via the end-
around carry digit [11]. A brief description of these methods
is provided in Section II.A, and more details on our perception
of the third one are in the Appendix 1.

In this work, in an effort for additional performance and
closer compatibility with the companion modulo-(2𝑞 − 1)
adder, we propose a modulo-(2𝑞 − 3) multiplication scheme
with fully modular PPG and PPR, where the remaining
sections are organized as follows. A brief background on RNS
and the previous modulo-(2𝑞 ± δ) adder and multiplier
architectures are offered in Section II, where in particular, we
briefly examine the three previous contributions on modulo-
(2𝑞 − 3) multipliers. In Section III, we propose the
corresponding fully modular architecture and the results of
analytical evaluations and synthesis outcomes of the previous
designs where the due comparisons with the proposed one are
compiled in Section IV. Finally, Section V contains our
concluding remarks and plans for future works.

II. BACKGROUND

A rather brief look at the previous modulo-(2𝑞 − 3)
multiplication schemes follows a short introduction to RNS.

A. General RNS

The arithmetic operations of a 𝑘-moduli RNS take place
in 𝑘 independent parallel residue channels corresponding to
moduli {𝑚1, … , 𝑚𝑘}. The ith (1 ≤ 𝑖 ≤ 𝑘) channel commonly
provides for a modulo-𝑚𝑖 operation-trio; namely, 1) residue
generation, 2) addition, and 3) multiplication. There are
commonly several (say 𝒩) operands that arrive in sequence
and enter the unit 1), aka forward converters, which receive an
𝑛-bit operand 𝑋 and generates the 𝑞(≪ 𝑛)-bit residues 𝑥𝑖 =
|𝑋|𝑚𝑖 = 𝑋 − 𝑚𝑖 ⌊𝑋/𝑚𝑖 ⌋, in parallel across the 𝑘 channels,

for 1 ≤ 𝑖 ≤ 𝑘. The 𝑥𝑖 residues serve as one operand of units
2) or 3), where the other operand is commonly the interim
result 𝑦𝑖 of the previous consecutive modulo-𝑚𝑖 operations.
On the arrival of the last input operand, the final 𝑘 -tuple
residue results feed an RNS-to-binary converter (aka reverse
converter) that produces the final non-modular result.

The efficiency of an RNS computation depends on:

1) Number of modular operations: At the end of 𝒩
modular operations on 𝑞 -bit residues of the non-
modular 𝑛 -bit operands, the aggregate time savings
due to 𝑞 ≪ 𝑛 may be much more than the time needed
for the required final reverse conversion, if 𝒩 is large
enough.

2) The bit-width 𝑄 of the widest residue channel: The
number of bits required for representing the residues
determines the speed of operations in the
corresponding channel. Therefore, RNS designers try
to cover the dynamic range of the application via
balanced width channels in order to minimize the delay
of critical path. For example, the RNS with moduli set
{2𝑞 , 2𝑞 ± 1} is very popular, where 𝑄 = 𝑞, across all
three channels, for which balanced adders and
multipliers exist.

3) Efficiency of the modular adders, multipliers, and less
critically of forward and reverse converters.

4) Mutual primality of all moduli: This property
maximizes the dynamic range. However, despite
exhibiting the highest efficiency, only one power-of-
two modulo 2𝑞 is allowed, where the rest of moduli are
commonly of the form 2𝑞 ± δ, with selected odd δ ∈
[1,2𝑞−1 − 1].

Efficient parallel prefix realizations of modulo-(2𝑞 ± δ)

adders for δ ∈ {1,3,2𝑗 + 1} exist [6, 7, 12, 13, 14] that
provide for almost balanced delay. On the other hand, efficient
modular multipliers have been offered for δ = 1 [8], based on
fully modular PPG and PPR (e.g., as in Fig. 1). However, the
relevant literature is not as reach for δ ≥ 3.

B. Revisiting the previous contributions on modulo-(2𝑞 − 3)

multiplication

For ease of evaluation and comparisons, we use the same
notation for the explanation of the previous modulo-(2𝑞 − 3)
multipliers. Given that 𝐴 , 𝐵 ∈ [0,2𝑞 − 4], the non-modular
product 𝐴 × 𝐵 , satisfies 𝑃 = 2𝑞𝑃ℎ + 𝑃𝑙 ∈ [0,22𝑞 + 16 −
2𝑞+3], where 𝑃ℎ = 𝑝2𝑞−1𝑝2𝑞−2 … 𝑝𝑞 , and 𝑃𝑙 = 𝑝𝑞−1 … 𝑝1𝑝0 .

The number of reduction levels ℒ(𝑞) must satisfy the
following.

2 (
3

2
)

ℒ(𝑞)

≈ 𝑞 ⟹ ℒ(𝑞) log
3

2
≈ log

𝑞

2
⟹ ℒ(𝑞) ≈ ⌈1.7 log

𝑞

2
⌉

[9]: Equation (1), describes the essence of the contribution in

[9], whose implementation is depicted in Fig. 2a, with
three carry propagate additions (CPA) in sequence.

|𝐴 × 𝐵|2𝑞−3 = |2𝑞𝑃ℎ + 𝑃𝑙|2𝑞−3 = |3𝑃ℎ + 𝑃𝑙|2𝑞−3 (1)

The first adder is roughly 2𝑞 − ℒ(𝑞) ≥
3𝑞

2
-bit wide, with

at least (3 + 2 ⌈log
3𝑞

2
⌉) ∆𝐺 ≥ (4.2 + 2 log 𝑞)∆𝐺 delay,

in parallel prefix realization, where ∆𝐺 denotes the delay
of a simple 2-input gate. This is preceded by ℒ(𝑞) =

⌈1.7 log
𝑞

2
⌉ CSA reduction levels, with the delay of

⌈6.8(log 𝑞 − 1)⌉∆𝐺 , (4∆𝐺 , for each level). Then the
authors use a modulo-(2𝑞 − 3) (4:1) compressor, where
no architecture nor implementation details are provided.
However, the actual design and structure of the
aforementioned compressor, unlike its modulo-(2𝑞 − 1)
counterpart, is not trivial and bears several levels of
modulo-(2𝑞 − 3) carry-save additions due to reentrant
carry digits ∈ {0,3}. Moreover, a single modulo-(2𝑞 −
3) addition at the last stage of the forward converter does
not always yield the desired result. The reason is that the
two 𝑞-bit operands may assume excess-modulo values in
{2𝑞 − 3,2𝑞 − 2,2𝑞 − 1}. Therefore, the interim sum can
be greater than twice the modulo, which requires another
round of modulo deduction. Nevertheless, in the lack of
implementation details in the article, we assume the
lower bounds for the delay components. That is 6 ∆𝐺,
for one (4; 2) compressor and 2(3 + 2⌈log 𝑞⌉)∆𝐺 , for
two parallel prefix 𝑞 -bit adders, amounting to (12 +
4 log 𝑞) ∆𝐺 . Therefore, a quite optimistic delay
evaluation of this work leads to the overall delay figure
roughly equal to (10 + 13 log 𝑞)∆𝐺.

[10]: The multiplier of [10] is represented by (2), where 𝑈 +
𝑉 is the carry-save representation of the product 𝑃 ,
obtained in 6.8(log 𝑞 − 1)∆𝐺, the same as in [9]. Two
levels of (4; 2) compressors modulo (2𝑞 − 3) reduce the
six operands (2𝑈ℎ + 𝑈ℎ + 2𝑉ℎ + 𝑉ℎ + 𝑈𝑙 + 𝑉𝑙) of (2) to
the 𝑞-bit input operands of the final modulo-(2𝑞 − 3)
adder, where 𝑈ℎ = 𝑢2𝑞−1 … 𝑢𝑞 , 𝑈𝑙 = 𝑢𝑞−1 … 𝑢0 , 𝑉ℎ =

𝑣2𝑞−1 … 𝑣𝑞 , 𝑉𝑙 = 𝑣𝑞−1 … 𝑣ℒ(𝑞)0 … 0. The corresponding

delay is at least 12∆𝐺, for the (4; 2) compressors, and
2(3 + 2⌈log 𝑞⌉) ∆𝐺, for the final 𝑞-bit modular adders.

Fig. 2b depicts the required implementation steps, where
one carry-propagate addition is saved due to the carry-
save representation of the non-modular product. The
same problem of excess-modulo operands persists as in
the first work. Therefore, a very optimistic delay
evaluation of this work leads to the overall delay figure
of (12 + 11 log 𝑞) ∆𝐺.

|𝐴 × 𝐵|2𝑞−3 = |𝑈 + 𝑉|2𝑞−3 =
|2𝑞(𝑈ℎ + 𝑉ℎ) + 𝑈𝑙 + 𝑉𝑙|2𝑞−3 =
|3(𝑈ℎ + 𝑉ℎ) + 𝑈𝑙 + 𝑉𝑙|2𝑞−3 (2)

[11]: The main idea of the more recent third design is to
produce a carry-save representation of 3𝑃ℎ (𝑃𝑙) via the
most (least) significant half of the multiplier for × 3𝐵
(𝐴 × 𝐵) . The triple and single half products are
organized in the same partial product bit-matrix and
reduced together. The carry-save result enters a
compound modulo-(2𝑞 − 3) adder that yields the final
modular product, where there are no details (though
nontrivial) on the compound adder. For self-containment
and sound basis for evaluation of Seidel’s [11] work, we
provide in the Appendix 1 a few clarifying illustrations,
besides Fig. 2c, based on our comprehension of this
innovative method. Nevertheless, unlike the
aforementioned two older contributions, the double
{0,1,2} representation modulo-(2𝑞 − 3) adder of [12]
has been used, with (4 + 2⌈log 𝑞⌉)∆𝐺 delay. The other
delay components of this work are 4∆𝐺 for the PPG and
Booth recoding, 4ℒ(2𝑞)∆𝐺 = 4⌈1.7 log 𝑞⌉∆𝐺 for PPR,
and 6∆𝐺, for the (4; 2) compressor, which all together
roughly amounts to (14 + 9 log 𝑞)∆𝐺.

III. THE PROPOSED SOLUTION

The straightforward fully modular approach in designing
the modulo-(2𝑞 − 3) multiplier follows the same path as in the
similar design for modulo 2𝑞 − 1 (see Fig. 1). However, each

2𝑞+𝑖 -weighted bit (0 ≤ 𝑖 < 𝑞), of a partial product, is
reentered as two bits in positions 𝑖 and 𝑖 + 1 , since

|2𝑞+𝑖𝑐|
2𝑞−3

= |2𝑞 × 2𝑖𝑐|
2𝑞−3

= 3 × 2𝑖𝑐 = 2𝑖+1𝑐 + 2𝑖𝑐 .

Therefore, as is depicted by Fig. 3 (for 𝑞 = 4), the obtained
Level 0 of the actual MPP matrix contains a 𝑞 × 𝑞 triangle of
black pixels (same as in Fig. 1), a (𝑞 − 1)×(𝑞 − 1) triangle

due to 2𝑖𝑐 component of reentrant product bits (also as in Fig.

1), and an additional shifted-left triangle due to 2𝑖+1𝑐
components. Consequently, there are 𝑞 product bits in the
rightmost column and (2𝑞 − 𝑖) bits in the rest of columns for
𝑖 (1 ≤ 𝑖 < 𝑞). In particular, the 2nd column (i.e., 𝑖 = 1) from
the right is the deepest one with 2𝑞 − 1 bits. Fig. 3 further
illustrates the next levels of the reduced MPP matrices, where
the new reentrant product bits land only in the first two
rightmost columns.

Unfortunately, however, utilizing the conventional
Wallace-tree reduction (as in Fig. 1) leads to a repeated pattern
of product bits in Level 5; hence an infinite loop of reduction
levels that never reduces to a 2-deep MPP matrix. This
problem, which is further analyzed in Section III.A below, is
shared for all 𝑞 -values, as is examined via an in-house
software program, for 𝑞 ∈ [3,64].

A. The Problem

Recalling Fig. 3 and the aforementioned problem in the
convergence of Wallace-tree reduction of modulo-(2𝑞 − 3)
partial products, note that the main cause of such anomaly is
due to the peculiarity of the second column from the right in
the MPP matrix. This column is originally the deepest with
2𝑞 − 1 bits. Moreover, it receives carry bits from two sources.
1) Ordinary carry spillovers due to reduction cells utilized in
its right (i.e., weighted-1) column. 2) Direct reentrant carries
from the reduction cells of the leftmost (i.e., weighted-2𝑞−1)
column. A copy of the latter carries is also sent to the
weighted-1 column, which in turn may cause additional
spillovers to the left (i.e., to the weighted-2 column). On the
other hand, a full adder (FA), as a reduction cell, decreases the
column’s depth effectively by 1, but an HA does not decrease
the depth except for the rare cases of no carry spillover from
the right. Such HA behavior suggests that when there are only
two bits left in a column that are not assigned to an FA, one
does not assign them to an HA and rather leaves them intact
to be possibly used in the next reduction level by another FA.

Fig. 2. Alternative designs for modulo-(2𝑞 − 3) multiplication, (a) [9], (b) [10], (c) [11], and (d) Proposed design. Components’ delays are in terms of

∆𝐺 (i.e., the delay of a simple 2-input gate).

This strategy very much resembles the Dadda reduction
method for non-modular PPR. However, it cannot be
considered here as an exact application of Dadda reduction.
The reason is that the essential property of equal depth of
partial product matrices of Wallace and Dadda trees, in all
reduction levels, may not be observed in modular reduction.

B. The Solution

Based on the above discussion, limiting the reduction cells
to FAs (unless extra reduction levels are not avoidable) seems
to lead to the desired convergence that was not possible when
Wallace tree reduction rules are strictly observed. For
example, Fig. 4 provides for the Dadda-like MPP matrix for
𝑞 = 4 , where the reduction process converges after five
levels, which is only one level more than the minimum
number of (3:2) reduction levels required for a (7:2) reduction.

However, via running the aforementioned in-house software
program, for 𝑞 ∈ [4,64], we have found out that the latter
undesired extra level (i.e., for 𝑞 = 4) is required only for the
case of 𝑞 = 32 (i.e., 10 levels instead of 9 levels of non-
modular reduction.

The latter Dadda-like reduction scheme is outlined in
Algorithm 1, where 𝑑𝑖 = 2𝑞 − 𝑖(0 < 𝑖 < 𝑞) denotes the
depth of Column 𝑖 in terms of bits, and 𝑑0 = 𝑞. Recalling the
identical reentrant bits in the Level 0 of Fig. 3, note that two
outputs are forked out from 𝑞(𝑞 − 1)/2 of the total 𝑞 × 𝑞
AND gates. A sample output of the corresponding software
(slightly decorated) is given in the Appendix 2.

Algorithm 1 (Modulo-(2𝑞 − 3) fully modular multiplication):

Input: 𝑞-bit multiplicand and multiplier residues
Output: Composition of the required FA cells for all the
reduction levels and columns

1. Init: 𝑑0 = 𝑞, For 𝑖 ≔ 1 to 𝑞 − 1 do 𝑑𝑖 = 2𝑞 − 𝑖.

2. MPPG: Generate the Level-0 MPP matrix via a matrix of
𝑞 × 𝑞 AND gates;

3. Do while there exists a column with a depth more than 2

 a. Column #0: Apply ⌊
𝑑0

3
⌋ FA reductions ⟹

𝑑0 = 𝑑0 − 2 ⌊
𝑑0

3
⌋ + ⌊

𝑑𝑞−1

3
⌋ ; /*Sending (Receiving) ⌊

𝑑0

3
⌋

(
𝑑𝑞−1

3
) carry bits to (from) Column 1(𝑞 − 1)*/

b. Column #1: Apply ⌊
𝑑1

3
⌋ FA reductions ⟹

𝑑1 = 𝑑1 − 2 ⌊
𝑑1

3
⌋ + ⌊

𝑑0

3
⌋ + ⌊

𝑑𝑞−1

3
⌋;

/*Sending (Receiving) ⌊
𝑑1

3
⌋ (⌊

𝑑0

3
⌋ + ⌊

𝑑𝑞−1

3
⌋) carry bits to (from)

Column 2 (0 and 𝑞 − 1)*/

c. Columns 1 < 𝑖 < 𝑞:

 For 𝑖 = 2 to 𝑞 − 1 do Apply ⌊
𝑑𝑖

3
⌋ FA reductions

⟹ 𝑑𝑖 = 𝑑𝑖 − 2 ⌊
𝑑𝑖

3
⌋ ⌊

𝑑𝑖−1

3
⌋ ; /*Sending (Receiving)

⌊
𝑑𝑖

3
⌋ (

𝑑𝑖−1

3
) carry bits to (from) Column 𝑖 + 1 (𝑖 − 1)*/

End For
 End Do while.∎

C. Proof of Convergence of Algorithm 1

The number of reduction levels ℒ(𝑞), for a full 𝑞 × 𝑞 bit
MPP matrix (e.g., Fig. 1, for 𝑞 = 4), must satisfy the
following.

2 (
3

2
)

ℒ(𝑞)

≈ 𝑞 ⟹ ℒ(𝑞) log
3

2
≈ log

𝑞

2
⟹

ℒ(𝑞) ≈ ⌈
log

𝑞
2

log
3
2

⌉ ≈ ⌈1.7 log
𝑞

2
⌉

Let 𝑝 = ⌊log 𝑞⌋ ⟹ 𝑞 = 2𝑝γ(1 ≤ γ < 2), which leads to

(3), since ℒ(𝑞) ≈ ⌈1.7 log
2𝑝γ

2
⌉ ≈ ⌈1.7(𝑝 − 1 + log γ)⌉.

⌈1.7(𝑝 − 1)⌉ ≤ ℒ(𝑞) ≤ ⌈1.7𝑝⌉, 𝑝 = ⌊log 𝑞⌋ (3)

02122232425262

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Fig. 3 Modulo-13 Wallace-tree PPR

To figure out the number of reduction levels for modulo-
(2𝑞 − 3) multiplication, note that the maximum depth, in all
reduction levels, occurs for Column 1. The reason is that it is
originally maximum (i.e., 2𝑞 − 1, as there are 7 bits in Level
0 of Fig. 3, for 𝑞 = 4) and is the only column that can receive
carry bits from two other columns within each level of
reduction; namely the right- and left-most columns, with the
original depth of 𝑞 , and 𝑞 + 1 , respectively. This is
approximately the same as the hypothetical case that Column
1 receives carry bits only from a single (2𝑞 + 1)-deep column
on its right. Therefore, the number of reduction levels 𝐿1, for
Column 1, can be approximated with ℒ(2𝑞), based on (3) (i.e.,
for a full 2𝑞 × 2𝑞 bit MPP matrix), which leads to (4). The
case of 𝑞 = 10 is further illustrated in the Appendix 3.
Therefore, Algorithm 1 converges in ⌈1.7 log 𝑞⌉ levels of
reduction, with the delay of 4⌈1.7 log 𝑞⌉∆𝐺, where the total
delay roughly amounts to (5 + 9 log 𝑞)∆𝐺.

⌈1.7𝑝⌉ ≤ 𝐿1 ≈ ℒ(2𝑞) ≈ ⌈1.7 log 𝑞⌉ ≤ ⌈1.7(𝑝 + 1)⌉ (4)

D. MPPR Delay Analysis

Delay of the proposed modulo-(2𝑞 − 3) PPR is only 2FA-
delay more than that of modulo-(2𝑞 − 1) , since ℒ(2𝑞) ≥
ℒ(𝑞) + 2 via comparing (3) and (4). For example, for the
common cases of 𝑞 = 2𝑝 (i.e., γ = 1), ℒ(𝑞) ≈ 2,4,6,7,10 ,
and 𝐿1 ≈ ⌈1.7 × 2⌉ = 4 , ⌈1.7 × 3⌉ ≈ 6 , ⌈1.7 × 4⌉ ≈ 7 ,
⌈1.7 × 5⌉ ≈ 9 , ⌈1.7 × 6⌉ ≈ 11 for 𝑞 = 4,8,16,32,64 ,
respectively.

On the other hand, given the approximate nature of the
latter evaluation, the actual 𝐿1 values may be slightly
different. As a matter of fact, the exact results, as are produced
by the aforementioned software program, are 𝐿1 =
4,6,8,10,11 in contrast to the above approximate results 𝐿1 =
4,6,7,9,11.

Nevertheless, for other 𝑞-values (i.e., 1 < γ < 2), lower
and upper bounds can be figured out from (4). For example,

the case of 𝑞 = 9 = 23 ×
9

8
 (i.e., γ =

9

8
) leads to ⌈1.7 × 3⌉ ≤

𝐿1 ≤ ⌈1.7 × 4⌉ ⟹ 6 ≤ 𝐿1 ≤ 7, which is in accordance with
the actual number of reduction levels 𝐿1 = 6, as is derived by
the aforementioned program.

IV. EVALUATIONS AND COMPARISONS

As was mentioned in Section II, the previous works in [9]
and [10] do not address the problem of excess-modulo
operands of the final modulo-(2𝑞 − 3) adder, which requires
another round of carry-propagate addition, unless it is
somehow avoided, as is the case in the work of [11] that refers
to [12], for implementing the utilized compound modulo-
(2𝑞 − 3) adder. However, the nontrivial details of the 4-way
compound structure is not provided therein.

The proposed solution also uses the modulo-(2𝑞 − 3)
adder of [12] but as the only carry-propagate adder in the
whole design, where the overall delay (see Fig. 2.d and
Section III.C) roughly amounts to (5 + 9 log 𝑞)∆𝐺. Recalling
the optimistic evaluations of the three previous works (see
Section II.B), no optimism is practiced in the evaluation of the
current work.

Recalling the PPR of Fig. 4, the number of utilized FAs
amounts to 18, for 𝑞 = 4 . This figure for 𝑞 ∈
{8,16,32,64,128} is {84,360,1488,6048,24384} ,
respectively. However, the three reference designs require less
FAs (e.g., about equivalent of 10, 7, and 8 FAs, for 𝑞 = 4),
while are quite more costly on the other components.

For circuit synthesis, we have described the home design
and those of [9] and [10] , for 𝑞 ∈ {4, 8, 16}, with Verilog
code, which is used for correctness tests and simulation via
Synopsis Design Vision, with TSMC 90nm CMOS
technology. The same experience was not possible for the
work of [11], due to lack of sufficient information, and that no
such results are provided for in that work. Therefore, we
present Fig. 5 to show the relative delay measures for the four
designs based on analytical gate level evaluations (see Section
II.B), where the proposed design offers the fastest PPR.

The experimental results are compiled in Table I, where
the delay and energy measures of the proposed fully modular
approach is superior to those of previous works, as are
reflected by bolded ratio measures.

02122232425262

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Fig. 4 Modulo-13 fully modular reduction in five levels with 18 full

adders

V. CONCLUSIONS

Modulo-(2𝑞 − 1) parallel multipliers that are realized via
fully MPP generation and reduction, are known to be the most
efficient of their kind. In particular the number of reduction
levels is the same as in the case of non-modular multiplication.
Similar approach on the design of modulo-(2𝑞 − 3)
multipliers has not been practiced before. In fact exact
mimicking of the greedy approach of using full and half
adders, as in the commonly practiced Wallace-tree reduction,
does not converge the reduction process to two accumulated
partial products for the final carry-propagate modular
addition. That is probably why instead of fully modular
reduction, the residue generation of non-modular products has
been the trend. However, the incompatible speed with that of
modulo-(2𝑞 − 1) fully modular multipliers reduces the
performance of RNS applications that use both moduli in the
working moduli set. Therefore, by getting around the
aforementioned convergence problem, we designed and
implemented the first modulo-(2𝑞 − 3) multiplier with fully
modular PPG and PPR. This fairly speed-compatible design
with its modulo-(2𝑞 − 1) counterpart yields the modular
carry-save product within at most two more FAs in the critical
delay path. Notably important is the use of the latest parallel
prefix modulo-(2𝑞 − 3) adder, in the final stage of multiplier
that is also speed-compatible with the modulo-(2𝑞 − 1) case.
In particular, handling the possible excess-modulo 2𝑞 − 3
operands with no delay overhead leads to more speed-balance
[12]. In this work, at least 24% less delay, and 10% less PDP
is gained in comparison to the figures of merit of the previous
designs, at the cost of at most 20% area/power consumptions.

As for the future relevant work, applying the similar fully
modular approach for modulo-(2𝑞 + 3) and modulo-(2𝑞 −
2𝑗 − 1) is in order, with the sound expectation of extending
the working moduli set with more balanced moduli.

ACKNOWLEDGMENT

This research was supported by Brain Pool program
funded by the Ministry of Science and ICT through the
National Research Foundation of Korea (NRF-
2022H1D3A2A01062978 and 2021H1D3A2A02040040) and
in part supported by Basic Science Research Program funded
by the Ministry of Education through the National Research
Foundation of Korea (NRF-2020R1I1A3063857).

REFERENCES

[1] Rooju Chokshi, Krzysztof S. Berezowski, Aviral Shrivastava, and
Stanislaw J. Piestrak, “Exploiting residue number system for power-
efficient digital signal processing in embedded processors,” in
Proceedings of the 2009 international conference on Compilers,
architecture, and synthesis for embedded systems (CASES '09), New
York, NY, USA, 19–28. https://doi.org/10.1145/1629395.1629401.

[2] D. Younes and P. Steffan, “Efficient image processing application using
residue number system,” in Proceedings of the 20th International
Conference Mixed Design of Integrated Circuits and Systems -
MIXDES 2013, Gdynia, Poland, 2013, pp. 468-472.

[3] N. Samimi, M. Kamal, A. Afzali-Kusha and M. Pedram, “Res-DNN: A
Residue Number System-Based DNN Accelerator Unit,” in IEEE
Transactions on Circuits and Systems I: Regular Papers, Vol. 67, No.
2, pp. 658-671, Feb. 2020, doi: 10.1109/TCSI.2019.2951083.

[4] M.V. Valueva, N.N. Nagornov, P.A. Lyakhov, G.V. Valuev, N.I.
Chervyakov, “Application of the residue number system to reduce
hardware costs of the convolutional neural network implementation,”
Mathematics and Computers in Simulation, Vol. 177, pp. 232-243,
2020. https://doi.org/10.1016/j.matcom.2020.04.031.

Fig. 5 Analytical gate level delay evaluations (Optimistic evaluations for the three reference works due to the lack of implementation details)

20

30

40

50

60

70

80

90

100
3 7

1
1

1
5

1
9

2
3

2
7

3
1

3
5

3
9

4
3

4
7

5
1

5
5

5
9

6
3

6
7

7
1

7
5

7
9

8
3

8
7

9
1

9
5

9
9

1
0

3

1
0

7

1
1

1

1
1

5

1
1

9

1
2

3

1
2

7

[9] [10] [11] Proposed
4 8 16 32 64 128

q

ΔG

TABLE I. EXPERIMENTAL RESULTS VIA CIRCUIT SIMULATIONS

Area Delay Power PDP

𝝁𝒎𝟐 Ratio 𝒏𝒔 Ratio 𝒎𝑾 Ratio 𝒑𝒋 Ratio

𝑞 = 4

Home 36314 1 4.34 1 0.73 1 3.19 1

[9] 37449 1.03 6.10 1.41 0.80 1.09 4.89 1.53

[10] 39349 1.08 6.41 1.48 0.86 1.17 5.52 1.73

 𝑞 = 8

Home 158935 1 5.41 1 4.50 1 24.36 1

[9] 132620 0.83 8.92 1.65 3.90 0.87 34.83 1.43

[10] 137372 0.86 6.70 1.24 4.11 0.91 27.58 1.13

 𝑞 = 16

Home 661472 1 6.32 1 22.80 1 144.11 1

[9] 530077 0.80 13.83 2.19 18.03 0.79 249.39 1.73

[10] 545047 0.82 8.40 1.33 18.88 0.83 158.60 1.10

https://doi.org/10.1145/1629395.1629401
https://doi.org/10.1016/j.matcom.2020.04.031

[5] Schinianakis, D., Stouraitis, T. “ Residue Number Systems in

Cryptography: Design, Challenges, Robustness,” Secure System Design

and Trustable Computing. Springer, https://doi.org/10.1007/978-3-

319-14971-4_4

[6] L. Kalampoukas, D. Nikolos, C. Efstathiou, H. T. Vergos, and J.

Kalamatianos, “High-speed parallel-prefix modulo 2𝑛 − 1 adders,” in

IEEE Transactions on Computers, vol. 49, no. 7, pp. 673–680, Jul.

2000.

[7] C. Efstathiou, H. T. Vergos and D. Nikolos, “Fast parallel-prefix

modulo 2/sup n/+1 adders,” in IEEE Transactions on Computers, vol.

53, no. 9, pp. 1211-1216, Sept. 2004, doi: 10.1109/TC.2004.60.

[8] C. Efstathiou, H. T. Vergos, G. Dimitrakopoulos and D. Nikolos,

“Efficient diminished-1 modulo 2𝑛 + 1 multipliers,” in IEEE

Transactions on Computers, vol. 54, no. 4, pp. 491-496, April 2005,

doi: 10.1109/TC.2005.63.

[9] P. M. Matutino, R. Chaves and L. Sousa, “Arithmetic Units for RNS

Moduli {2𝑛 − 3} and {2𝑛 + 3} Operations,” in Proceedings of the 13th

Euromicro Conference on Digital System Design: Architectures,

Methods and Tools, Lille, France, 2010, pp. 243-246, doi:

10.1109/DSD.2010.77.

[10] H. Ahmadifar and G. Jaberipur, “Improved modulo- (2𝑛 ± 3)

multipliers,” in Proceedings of the 17th CSI International Symposium

on Computer Architecture & Digital Systems (CADS 2013), Tehran,

Iran, 2013, pp. 31-35, doi: 10.1109/CADS.2013.6714234.

[11] P. -M. Seidel, “High-Performance Multiplication Modulo 2𝑛 – 3,” 52nd

in Proceedings of the Asilomar Conference on Signals, Systems, and

Computers, Pacific Grove, CA, USA, 2018, pp. 130-134, doi:

10.1109/ACSSC.2018.8645523.

[12] G. Jaberipur and S. H. F. Langroudi, “(4 + 2𝑙𝑜𝑔 𝑛)Δ𝐺 Parallel Prefix

Modulo- (2𝑛 − 3) Adder via Double Representation of Residues in

[0, 2] ,” in IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 62, no. 6, pp. 583-587, June 2015, doi:

10.1109/TCSII.2015.2407772.

[13] S. Ma, .l.H. Hu, C.H. Wang, “A Novel Modulo-(2𝑛 − 2𝑘 − 1) Adder

for Residue Number System,” in IEEE Transactions on Circuits and

Systems I, vo1.60, no.ll, pp. 2962-2972, Nov. 2013.

[14] S. H. F. Langroudi and G. Jaberipur, “Modulo-(2𝑛 − 2𝑞 − 1) Parallel

Prefix Addition via Excess-Modulo Encoding of Residues,” in

Proceedings of the 22nd Symposium on Computer Arithmetic, Lyon,

France, 2015, pp. 121-128, doi: 10.1109/ARITH.2015.9.

APPENDIX 1 (HOME DESCRIPTION OF THE MAIN IDEA OF

SEIDEL’S WORK [11])

Fig. A1-1 provides for partial product matrices for 𝐴 × 𝐵
and 𝐴 × 2𝐵 , where 𝐴 , 𝐵 ∈ [0,12] are modulo-(2𝑞 − 3)
residues, for 𝑞 = 4. The symbols ⊳, ⊲, and ⊔, represent the
value of the corresponding 10-, 6-, and 4-bit collections. In
addition, △ and △3 denote the collective values of 2𝑞 -
weigthed carries that are generated during partial product
reduction for 𝐴 × 𝐵 and 𝐴 × 3𝐵 (i.e., 𝐴 × 𝐵 and 𝐴 × 2𝐵 ,
ensemble), respectively. Recalling that 𝐴 × 𝐵 = 2𝑞𝑃ℎ + 𝑝𝑙 , it
is easy to see that:

𝑃ℎ =⊲ + △, 𝐴 × 3𝐵 = 3 ⊲ + ⊔ + △3 (A1)

Similarly, Fig. A1-2 represents the partial product MPP
matrix for 𝐴 × (3𝐵), where 𝐵1, 𝐵2, and 𝐵3 denote the carry-
save digits of 3𝐵, and ⊲3 corresponds to the collective value
of the shaded 10-bit collection that is indeed the output of the
most significant half multiplier for 𝐴 × 3𝐵.

Therefore, the two expressions representing the most
significant half of 𝐴 × 3𝐵, in Figs. A1 and A2 yield the same
value, which leads to (A2), and (A3) for implementation,
where 𝑈 + 𝑉 represents the carry-save result of ⊲3+ 𝑃𝑙 .

⊲3+△3= 3 ⊲ + ⊔ + △3⟹ 3 ⊲=⊲3−⊔⟹ 3𝑃ℎ = 3 ⊲
+3 △=⊲3+ 3 △ − ⊔ (A2)

|𝐴 × 𝐵|2𝑞−3 = |3𝑃ℎ + 𝑃𝑙|2𝑞−3 = |⊲3+ 3 △ − ⊔
+𝑃𝑙|2𝑞−3 = |𝑈 + 𝑉 + 3 △ − ⊔|2𝑞−3 (A3)

Finally, the main idea of [11] is illustrated by Fig. A1-3,
where 𝑑 denotes the actual bit-depth of each column, which
depends on the number of carry-save digit-products.
Therefore, the maximum depth is 2(𝑞 − 1) + 2 = 2𝑞, where
recalling (3), the number of reduction levels, without the end-
around carry reentrance is ⌈1.7𝑝⌉ ≤ ℒ(2𝑞) ≤ ⌈1.7(𝑝 + 1)⌉.
Note that ⊲3+ 𝑃𝑙 is obtained via joint partial product
reduction of the bits of 𝐴 × 𝐵 least significant half multiplier
and 𝐴 × 3𝐵 most significant half multiplier. This result must
undergo a correction by 3 △ − ⊔, where △ (⊔) is obtained
via a 𝑞-bit (𝑞-element) carry generation network (counter).

 ⊔

𝐴 × 𝐵

 𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0

⊳

⊲

 𝑎3𝑏1 𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1

 𝑎3𝑏2 𝑎2𝑏2 𝑎1𝑏2 𝑎0𝑏2

 𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3

 𝑃ℎ =⊲ + △ ←△

𝐴 × 2𝐵

 𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0

 𝑎3𝑏1 𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1

 𝑎3𝑏2 𝑎2𝑏2 𝑎1𝑏2 𝑎0𝑏2

 𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3

 ⊔

 3 ⊲ + ⊔

 3 ⊲ + ⊔ + △3 ←△3

Fig. A1-1 Partial product MPP matrix for 𝐴 × 𝐵, 𝐴 × 2𝐵, and collectively 𝐴 × 3𝐵

 𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0

𝐵1 = 𝑏1 + 𝑏0

⊲3

 𝑎3𝐵1 𝑎2𝐵1 𝑎1𝐵1 𝑎0𝐵1

𝐵2 = 𝑏2 + 𝑏1 𝑎3𝐵2 𝑎2𝐵2 𝑎1𝐵2 𝑎0𝐵2

𝐵3 = 𝑏3 + 𝑏2 𝑎3𝐵3 𝑎2𝐵3 𝑎1𝐵3 𝑎0𝐵3

 𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3

 ⊲3+△3 ←△3

Fig. A1-2 Partial product MPP matrix for 𝐴 × (3𝐵)

However, the Booth recoding is not applied, due to its trivial
impact on the overall delay, since the delay of recoding is
equal to the delay saving via one less reduction level.
Therefore, the overall delay consists of those of PPG, PPR, △,
(4; 2) compressor, and final modulo-(2𝑞 − 3) adder.

𝑑 5 6 7 8

⊔

𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0
𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1 𝑎3𝐵1
𝑎1𝑏2 𝑎0𝑏2 𝑎3𝐵2 𝑎2𝐵2
𝑎0𝑏3 𝑎3𝐵3 𝑎2𝐵3 𝑎1𝐵3

 𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3

 ⊲3

Fig. A1-3 Joint partial product reduction

APPENDIX 2 (OUTPUT OF THE HOME SOFTWARE FOR 𝑞 = 10)

Fig. A2 depicts the output generated by the in-house
software, for 𝑞 = 10, where each dot represents a product bit
The top dot matrix represents the original MPP, where 𝐿1 =
19, and integer list, on the right, regards the number of FAs
used for the product bits of each column, from left to right,
respectively. The next seven reduced MPPs can be explained
likewise. The total FA counts in Levels 0, 1, 2, 3, 4, 5, and 6
amount to 45, 31, 22, 15, 9, 9, and 4, , respectively.

APPENDIX 3 (CLARIFICATION OF (4), FOR 𝑞 = 10)

Table A3 presents the reduction levels of Fig. A2 in terms of
the corresponding depths. Note that the leftmost column (i.e.,
𝑞 − 1) has been moved around to the right of Column 0, for
better illustration of the end-around carry movements, where
the carry emitting columns are indicated by ← and the
receiving ones by ↓ , with the same highlight color. The
number of emitted and received carries are also denoted by the
same font color.

Using (4), in case of 𝑞 = 10 (i.e., 𝑝 = ⌊log 𝑞⌋ = 3), as
follows, gives an estimation of 6-7 reduction levels that is
confirmed by the actual seven reduction levels shown in
Table A3.

⌈1.7 × 3⌉ ≤ ℒ(20) ≤ ⌈1.7 × 4⌉ ⟹

⌈5.1⌉ ≤ ℒ(20) ≤ ⌈6.8⌉ ⟹ 6 ≤ ℒ(20) ≤ 7

Table A3 Alternative illustration of Fig. A2

𝑳∗ 𝒒 − 𝟐 𝒒 − 𝟑 … 𝟐 𝟏 𝟎 𝒒 − 𝟏∗∗

*** 𝑞 + 2 𝑞 + 3 2𝑞 − 2 2𝑞 − 1 𝑞 𝑞 + 1

 ← ↓ ← ← ↓ ← ↓ ↓ ← ↓ ← ↓

0 12 13 18 19 10 11

1 8 9 12
6 + 1 + 3
+3 = 13

3 + 1
+3 = 7

3 + 2
+4 = 9

2 7 6 8
4 + 1 + 3
+2 = 10

2 + 1
+3 = 6

3 + 2
= 5

3 5 4 7
3 + 1 + 1

+2 = 7
2 + 1
= 3

1 + 2
+2 = 5

4 4 3 5
2 + 1 + 1

+1 = 5
1 + 1
= 2

1 + 2
+1 = 4

5 3 2 4
1 + 2

+1 = 4
2 + 1

1 + 1
+1 = 3

6 2 2 3
1 + 1

+1 = 3
1 2

7 2 2 2 1 1 2

* Level #,

** displaced from the left most position, for better illustration of
spill over carries to Columns 0 and 1

*** Original depth

MPP dot matrix # of FAs per column

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Fig. A2 Seven reduction levels for 𝑞 = 10, with the number of FAs indicated
for each column and Level.

